If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-54q+360=0
a = 1; b = -54; c = +360;
Δ = b2-4ac
Δ = -542-4·1·360
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-6\sqrt{41}}{2*1}=\frac{54-6\sqrt{41}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+6\sqrt{41}}{2*1}=\frac{54+6\sqrt{41}}{2} $
| x=729+18-9 | | 16y-9y=56 | | 3k/1=7k+2 | | 1/3q^2-18q+120=0 | | 6x+86=13x-5 | | 7/1.066=z/ | | c5c+16.5=13.5+10c | | -25(10)-x=25+250 | | 104-v=194 | | 10k+100=50k+120 | | |-3x|=|2x+6| | | X=6x-6x | | 4x-3=12+2 | | 12(x+2)=84 | | B-8+6b=28 | | 8x-9=3.5x | | 2(x-4)=-3(-x+3) | | 4x+1=3.75x+2 | | -2(x-6)+7x=48-4x | | 5x^2-1=11 | | x-0.15x=3.45 | | 60p*32=p-32 | | 12x+12=15x-9 | | 8x-9=7/2x | | -3(a+1)-5=3a-2 | | -13-2x=8+2 | | 150m-100m+42975=45675-175m | | 24/x=6/1 | | 2*c-7/3=25 | | z-14=3z+4 | | 5(x+3)4x-5=4-2x | | 1/2x-7=-6/5x+3/2 |